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Dimension Spectrum of Axiom A Diffeomorphisms. 
I. The Bowen-Margulis Measure 
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We compute the dimension spectrum f(ct) of the singularity sets of the Bowen- 
Margulis measure defined on a two-dimensional compact manifold and 
invariant with respect to a C 2 Axiom A diffeomorphism. It is proved that f is 
the Legendre-Fenchel transform of a free energy function which is real analytic 
(linear in the degenerate case). The function f is also real analytic on its defini- 
tion domain (defined in one point in the degenerate case) and is related to the 
Hausdorff dimensions of Gibbs measures singular with respect to each other 
and whose supports are the singularity sets, and we decompose these sets. 

KEY WORDS:  Multifractal; thermodynamic formalism; Hausdorff dimen- 
sion; free energy function; large deviations; Gibbs measures. 

INTRODUCTION 

Let (X,/~, g)  be a d y n a m i c a l  system, where X is a metr ic  com pac t  space, 
g a t r a n s f o r m a t i o n  o n t o  X, an d  p a g - i n v a r i an t  measure  on  X. Mul t i f rac ta l  
analysis  is conce rned  with the decay rates of the measures  p ( U )  where  I UI 
goes to 0 (IUI denotes  the d iameter ) .  To  this purpose  we define the maps  

0~+(x)=  li-m L o g p ( U )  an d  a - ( x ) =  lim L o g p ( U )  (0.1) 
xeintiU) Log [U[ x~int""Tv) Log [U[ 

IU I - -o  IV l~O 

which lead to the def ini t ion of the s ingular i t ies  of the measure  p in one  
point :  when  we have ~ + ( x ) = c t - ( x ) = c t ( x ) ,  then  ct(x) represents  a local 
d imens ion  [ p  has poin twise  d i m e n s i o n  a ( x ) ]  a n d  we write p ( U ) . . .  [U] "t'l. 
This  n o t i o n  w a s ' i n t r o d u c e d  by F r o s t m a n  in po ten t ia l  theory  with the 
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capacities, and we can develop further this study for invariant measures of 
dynamical systems. 

Some theoretical physicists c7~ have found relevant information in the 
singularity sets 

c :  = {x/~+(x)=~}, c ;  = {x/~-(x)=~},  c , = c :  n c ;  (0.2) 

and using thermodynamic formalism, they obtain results about local 
singularities of a measure. Most of them concern expanding hyperbolic 
dynamical systems when g is C 2 (or C ~+~) and g '>_-y>l :  d i m X = l  
( X =  [0; 1] or Sl),  ~2' ,7~ and dim X = 2  ( X =  [0; 1] 2 or -g)113.23~ when/1 has 
nonzero Lyapunov exponents. There also exist results for local singularities 
for a class of random measures (multiplicative chaos) obtained by random 
iterated multiplications. ~ They correspond to a rigorous study of the 
phase transition of a system with random interactions. 

When the measure I~ is ergodic, then there exists a real ~ > 0 such that 

~(x) = ~ /l-a.e. and /~(C~) = 1 

It is then interesting to study the singularity sets (0.2) when they are not 
empty when ~t § and ~t- take different values. We then obtain fractals, and 
in order to recognize them, we define the dimension spectrum function 

f(~):  

f(ct) = H D ( C ~  ) and f -  - oo when the sets are empty (0.3) 

Using large-deviations results, it is easy to prove the inequality H D ( C  + ) <~ 
f(~).  To prove the reverse inequality, H D ( C + ) ~ f ( c t ) ,  we apply a 
Frostman's lemma to a measure constructed on a set V , c  C~ (this con- 
struction is recursive and depends on several appropriate sequences). 

Under suitable assumptions this function f is the Legendre-Fenchel 
transform of a free energy function F concave and C 

f (~)  = inf { t ~ - F ( t ) }  (0.4) 
t e R  

where F is defined from a sequence of partition functions (Z,,),,~>, 

with 

1 
V/3eR, F(/3)= lim - -  Log Z,,( fl ) (0.5) 

n ~  + ~  n 

z,,(/~)= ,T__, ~(u)  '~ 
I / e  ~:n 

i t { / - : )  > 0 
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where (U,,),,_>I is a part i t ion whose diameter  tends to 0 when n tends to 
+ o 0 .  

The Model 

We take X to be a compact manifold of dimension 2 (for example, the 
torus 1-) and g is a C'- Axiom A diffeomorphism. The g-invariant  measure 
/J is the Bowen-Margul i s  measure,  the one that realizes the max imum of 
topological entropy.  See also ref. 16, where an analogous example is 
treated. 

In order to prove our main  result 

J'(ct)=HD(C~) for c t � 9  +* and f - - o o  otherwise 

and f is real analytic on ]ctl; a2[ (in the degenerate case a , - - c  t,), we are 
going to prove the existence with explicit formulas, the regularity, and 
some other properties of a free energy function F related to the dimension 
spectrum f as in (0.4). 

1. DEFINITIONS, NOTATIONS, AND PRELIMINARIES 

The tangent space to X" can be written 

Tx = U T,- ( tangent space at the point x) 
.v ~ ) (  

and we represent the differential map  o f g  at x by Dg,.: T , .~  Tg~.,. v 

D e f i n i t i o n  1.1.  A set F is said to be hyperbolic if ~l' 181. 

�9 F is closed and g(F) = F. 
- -  u s u u s .~ �9 VxeF,  T , . - E , . G E  x with Dg(Ex)=Egc~. ~ and Dg(E,.)=Exc,. ~. 

�9 3c > 0 and ), �9 ]0; 1 [ such that for any integer n we have 

V(v, w ) e E . " x E ] . ,  IIDg"(v)ll <<.cA" Ilvll and IIDg "(w)ll ~<cit" Ilwll 

�9 E.'~. and E",. vary continuously with x. 

D e f i n i t i o n  1.2. A point x � 9  is nonwandering if 

VV�9 Vn(,~>~ g"(V) )r  

Let Q=g2(g)={xeX/xnonwander ing} .  The set I2 is closed, 
g-invariant,  and {x �9 X/x periodic } c .Q. 

822/76/5-6-16 



1332 Simpelaere 

Definition 1.3. g is said to be Axiom A if and only if f2 is hyper- 
bolic and {x~X/xperiodic} =f2 (g is Anosov if X is hyperbolic). We 
define the sets which are the stable manifolds (respectively unstable) by 

W~(x)={y~X/d(g"(x),g"(y))<~e, Vn>~O} [resp. d(g-"(x),g-"(y))<~e] 

we have then 

and therefore 

Vy~X, d(g"(x),g"(y))<~2"d(x,y) 

W~(x) = { y ~ X/d(g"(x), g"(y) ) --. 0} = W~(x) 

Proposition 1.1. g contracts in the stable direction and expands in 
the unstable direction. 

Definition 1.4. The "canonical coordinates" 

V6>0,  3e>0,  V(x,.v)~;.Q 2, d(x,y)<<.~=~ W',~(x)c~ W~(y)=  [ x ; y ]  

define a unique point and a continuous map (the local product) 

E.;.]: {(x,y)e~2/d(x,),)<~}--,~ 

Proposition 1.2. g[e  is expansive (of constant ~). 

o? 

Spectral Decomposition 

We have .Q = I,,J~= i ~r~i, where the sets g2 i are disjoint compact sets 
satisfying g(I2i)= ,(2 i and g Me, is topologically transitive. 

Definition 1.5. The sets f2~ are called basic sets. 

Proposition 1.3. Any g-invariant measure has its support in O. 
In the particular case when g is an ergodic probability measure, its support 
is included in a basic set. 
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We introduce now Markov partitions to make an analogy with sym- 
bolic dynamical systems. 

D e f i n i t i o n  1.6. Let A be a basic set. A Markov partition is a finite 
cover ~ ........ of  A made of proper  rectangles ( R = i n t ( R )  and 
V(x, y) �9 R 2, [x;  y ]  �9 R) such that 

�9 int(q/,.)c~int(a//j)= ~ for i ~ j .  

�9 If x �9 int(q/~) and g(x) �9 int(qZi), then we have 

W"(g(x),~ ql~)) and g(WS(x, allA)c W~(g(x),~llj) 

with W~(x, o/~,) = W~(x) c~ o//;. 

We can make Markov partitions of arbitrary small diameter (in 
part icular<) ,) .  We associate to this partit ion the transition matrix A 
defined by 

{~ if int(q/A n g -  ' (int(q/j)) 4: ~ 
A~ = otherwise 

which is irreducible [V(L j) ,  ~n such that (A"),.j>O]. 
We define now the subshift of finite type associated to the matrix A: 

Z'A = { ~ � 9  { 1,..., m}Z/A ......... , =  l} 
+ 27 A = { ~ � 9  ..... rn} /A ......... ~=1} (resp.s  

On the compact  set s we define a metric 

{).0 ~ if k=sup{ l i l : x i=y , ,V i ,  O<<.lil<k} 
_d(x,_y) = if x =_y 

and the shift a: a (x)  =_y, where Vn~>0, y,,=x,,+~. 
We can define a continuous surjection (Lipschitz) 

x-~ N g-Jt~,~) 
j ~ Z  

satisfying Vn �9 7/, rc ~ a" = g" o ft. 
The map rt represents a code of  the orbits of points of A; moreover,  

is bijcctive on A\I, Jj~ • g - J (aso / /u  0u~ where 

OSql = { x �9 all/x r int( WU(x, o11) } 
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and W"(x, ~ = W~(x) n ql with I~/I < e. The measure of  the set 
Oj~ z g - q  Osqi w O"q/) is 0 by I1" II and by any Gibbs measure. 118~ 

D e f i n i t i o n  1.7.  M(A) is the set of probability measures defined on 
A and Mg(A) is the set of g-invariant probability measures defined on A. 

D e f i n i t i o n  1.8.  C(A) represents the set of real, cont inuous func- 
tions defined on A, and the set C6(A)c C(A) represents those which are 
6-H61der continuous. 

D e f i n i t i o n  1.9.  The pressure of a function ~beC'~(A) is the real 

P , = P g ( ~ b ) =  sup [h, + F o~ dp ] [ = Po(~b o ~)]  
p E M e { A )  L " .-I 

and the unique measure p~ which achieves this supremum is the Gibbs 
measure of ~b. To this measure p~ we associate the measure ~M~(-rA)  
such that p C =  rt*~. We have then he(a)=h~, , (g)  and the measure ~ is the 
Gibbs measure of ~borceC~(XA). The map z t : (A,p~)- -*( ,S4 ,~)  is an 
isomorphism of dynamical sys tems/"  ~8~ 

We decompose now the Bowen-Margul is  measure p (which is the 
Gibbs measure of 0) defined on the basic set A ~ X. Let h be the entropy 
of/~ 

h =  sup h p > 0  
p 6 M ~ ( A )  

We apply the Per ron-Frobenius  theorem to the matrices A and 'A. There 
exist eigenvectors u and v and a real r  ! such that 

Au=cpu and 'Av=qgv with V i e [ I ' m ] ,  uivi>O and ~, uivi= l 
i= l  

We determine a measure v as follows: 

for k<~p, V{SeSA/Xk =) 'k  ..... Xp =) 'p} = (p - ( p - k l  Vy kU),p 

It is easy to see that (a, v) is a Markov chain over X A which satisfies the 
relations 

h,,(a) = Log tp = t7 = h~,(g) 

and then we have 
]a =/~*V 

We have, for example, 

Vi~ [ 1 ; m ] ,  v{5~XA/xo=i}  = b l i V  i. 
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We define also v 
by 

[resp. 

We verify that  

[resp. 

+ (resp. v -  ) on Z'~- (resp. Z'~ ) on the cylinders for k >~ 0 

v + { ~  Z ~ l x o  =yo ..... Xk =Yk} = (P-ku.,,, 

v-  {x e Z 5 / x - k  = Y-k  ..... XO = YO } = (P -*V,,_, ] 
(1.1) 

+ 
trVl{~_~Y_J/.,o=yo, xl =yl} = q~-IVl'~x~Z~'/xo=y,} 

a J . . ig~zT/xo=y_,}] V I { s ~ E ~ / x - I  = v - I  x o =  vo} : ~0 - IV  - 

We associate to the measure  v+(resp, v - )  a measure /x" (resp./x ~) defined 
on the unstable manifolds W u (resp. stable WS). One proves that 
locally~ 19. _~o) 

/ ~ = # " x / ~  ~ (1.2) 

Consider  now the dynamical  part i t ion (or Markov ian  part i t ion) which 
is obtained by iterations of  the Markov  part i t ion ~ =  (~;)i=~ ........ and 
defined by 

n -  1 

~ o = ~  and ~ , , =  ~/  g - J ( ~ o )  (1.3) 
j =  ! - n  

Consider also the unstable dynamical  parti t ion ~,~ and the stable one ~,~, 
with 

~,, = [ ~ ; ; ;  ~ ; ]  (1.4) 

We associate to an element U of ~,~ the element y ( U ) e  U such that 

Ig"(U)l  = I(g") '  (y(U))I .  [UI "~ I (1.5) 

Here and throughout  this paper,  the sign --- expresses that the ratios of 
both sides are uniformly bounded by constants  c and c-1.  We have similar 
properties for elements of  ~ , ,  and we have, following (I.1), for U ~ ~,~ and 
V s ..~,,, 

#'( U)~_ ps(V) ,'- e - 'h (1.6) 

since U and V are associated under n with cylinders of size n in, respectively, 
Z'~- and X j  and centered in, respectively, n - l ( y ( U ) )  and n- l ( y (V) ) .  It 
is easy to see that  there exist two positive reals 1 < a < b such that  for any 
U ~ Z ~  and V~27~ 

b-"~< IUI, I Vl ~<a-" (1.7) 
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Let us note for x �9 A 
u J"(x) = - L o g  Jacobian Dg: E~ ---, E gt.,~) 

(1.8) 
[resp. J'(x) = Log Jacobian Dg: E.S~ --', E~I., j 

The functions J"  and j s  are negative and 5-H61der continuous func- 
tions/ ~1 Expression (1.5) becomes 

exp J"[gJ(y(U))] ~-IUl (1.9) 
J 

(resp. e x p { i ~ i  jS[gJ(y(V))]}~-IVI) 

We shall use (1.2) to decompose the free energy function F into 
F'~+F s where F" (resp. F s) is an unstable free energy function (resp. 
stable). Following ref. 2, if we take f as in (0.4), we prove that f is the 
dimension spectrum of the measure/a. This function f (~)  is also related to 
the Hausdorff dimensions of measures /~ whose supports are the 
singularity sets C=. We decompose the sets C~ into the local product of 
singularity sets of p" and p~: C ~  [C, , ;  C~.~], and these two sets have the 
same Hausdorff dimensions. 

The first step is to introduce the free energy function and to compute 
it. 

2. EXISTENCE AND REGULARITY OF THE FREE ENERGY 
FUNCTION 

We shall see that the existence is very much harder to prove than the 
regularity. For the existence we resolve this two-dimensional problem into 
a one-dimensional problem by decomposing the free energy function F 
into the sum of an unstable free energy function F ~ and a stable free energy 
function F ". This is done in the next section. 

2.1. Decomposit ion of the Free Energy Function 

Each unstable manifold intersects A in a countable union of sets of 
type W'(or and intersects transversally all the stable manifolds. The 
metrics on W~oc(x)m A, which is compact, as a Riemannian submanifold, 
and the one inducted as the restriction of I1"11 are Lipschitz equivalent. 
Then the choice of the metric does not matter in the following. We shall 
use, for example, uniform partitions (U',',),,>~ [resp.(U,~,),,~>~] on the 
unstable (resp. stable) manifolds of diameter me-" .  We define then the 
local product U,, = [- U,'~; U,~I]. 
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VC~,(x) 

We define also the real functions as in (0.5) for any real /~ 

F " ( f l ) = - l L o g {  ~ r p} [resp. F'.(fl) forV~U,;]  (2.1.1) 

We have at the rank n with W= [U, V] 

1LOg{w ~ /~(W) t~} (2.1.2) F,,(p) = - ~  u. 

Using (1.2), we have locally 

~ ( w )  = ~ " ( u )  ~ ' ( v )  
and (2.1.2) becomes 

F,,(fl) = F;;( fl) + F;',(fl) + u,,(fl) (2.1.3) 

where u,,(fl) represents parasite terms which disappear at the limit (with 
l/n Log) when n goes to +oo. It suffices therefore to show that the 
sequence of functions (F,~),,>. ~ [resp. (F,~,),,~)] converges to a function F" 
(resp. F") to obtain 

VileR, iim F, , ( f l )=F(f l )=F"(f l )+F~(f i )  (2.1.4) 

We compute then in the next section the functions F" and F" in order 
to obtain F. 

2.2. C o m p u t a t i o n  of  the Free Energy Funct ion 

The unstable free energy function is given by the following, 

Theorem 2.2.1. We have for any real fl 

F"(fl) = inf [hp-f lh-]  

Observe that there is nothing to prove for fl = 1, since we have for any 
partition (U",),,~j, F,'~(1)= 0, and then both quantities are 0. Observe also 
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that the functional involved in the theorem satisfies the following result (or 
its opposite if we take - F " ) .  

P r o p o s i t i o n  2.2.2. We have for any real fl 

sup l ( p ) =  sup I (p)  
t)~ MgIA) p~ Mr(A) 

p ergodic 

where 
hp - ~h 

I( P ) = i ~ - ~  ~p 

Proof of Proposition 2.2.2. The map p ~ I(p) is upper semicon- 
tinuous since the dynamical system expands (reC4, 16.7, p. 107). The 
ergodic measures are extremal and form a G6 in Mg(A)--this  property 
comes from the specification in ref. 4, 21.9, p. 198. The supremum is then 
equal over the two sets, and it is achieved since Mg(A) is compact. | 

R e m a r k s .  The functional I is a large-deviations functional. 

�9 As proved with regard to Theorem 2.4.1, this supremum is achieved 
by a unique measure p~ which is the Gibbs measure of the H61der con- 
tinuous function -h f l  - F"(fl) J". 

�9 We have for f l > l ,  V ~ M ~ ( A ) , I ( ~ ) < O ,  and for f l = l ,  V~4=/~'(, 
I(~)<0. 

Theorem 2.2.1 will follow directly from Lemmas 2.2.3 and 2.2.5. We 
first estimate an upper bound of the upper limit with the following. 

I . e m m a  2.2.3. We have for any real fl 

lim -F,~,(fl)<~ sup l (p)  
n ~  + :r. p E M g ( A )  

Proof of l.emma 2.2.3. Let t i e r  and (U',',),,~ be a uniform 
unstable partition such that for any U~ U',', we have [U] ~ e-" .  Using (1.6) 
and (1.9), we associate to any interval U~ U, ~ an integer n(U) and an 
element y(U) E U such that 

InlU)- 1 } 
Ig'lW)(U)l = IUI exp ~ i~o J"[gi( ) ' (U))]  "~ 1 

or in another form 

n(U)- I 
J"[ gi( y( U) ) ] ,,, - n  (2.2.1) 

i=0 
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and the #" measure of U satisfies 

It suffices to see that if 

y ( U ) = n ( ( Y i ) i ~ f )  and 

1339 

p"( U) ~- e -"t'~h (2.2.2) 

for k > 0  

1 L o g {  ~ t e -'tU)m'} (2.2.3) 
- F i i ( f l )  ~ ,7 , :  ;,, 

Let us define the sets 

Ei= { U ~ U;I/n( U)=  i} (2.2.4) 

which are only defined for integers i varying in a linear scale, since, using 
(2.2.1), 

[supn_ j, ,;  n ] 
i t  i n f - J "  = [ h a l ; n a z i  

There exists therefore an integer i(n) such that for any integer i we have 

# E~ e - ira, ~< # Ea,, ~ e - "" ~ m, 

and then 

# Ei~,,)  e - i~,,j m, ~< 

and (2.2.3) becomes 

~. e-"~ulPh <~(az-a~)n # Ei~,,~e - " ' m '  
u ~  

- F',',( fl ) "-. -I Log # Ei~,,~e -"'Ira' 
FI 

and this leads to 

and p = inf{ k / 3 C [  c n - l (  U)} >t n(U), then we have 

p"(g"~t'~(U)) ~- 1 ". v+(aP(C;) )  and p"(U) ",- e -"~UIh'~ v+(C + ) ~- e -t'h 

[n(U) represents the "size" of U and e - "  its length]. We have therefore by 
(22.2) 

l log  I ~ P"(U) t~} - -Fi"( f l )=n ~ . u ~  
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o r  

-F; : ( f l )  ~-1 Log # E , ( n )  - i ( n )  flh 
t /  n 

(2.2.5) 

Let us define the probability measures 

1 
0 , , - - -  ~ 6,.~v and ~,,= 

# El(,,) u~ Eo,, 

1 i l n l -  I 
gJ O,, 

i(n) j=o 

The sequences 

1 i(n) 
- Log #Eio , ,~  [0; 1 ], E [al;a~_], r 
n n 

take their values in compact  sets. We can suppose, if necessary by reindexing 
the sequences, that these sequences converge: 

1 
- L o g  #Ei~,,~'-"~E [ 0 ;  1 ]  
n 

i(n) 
- -  --* q E [-al; a2] (2.2.6) 

n 

~,, --* ~ (observe that the limit is g-invariant) 

We get therefore 

- El',(fl) ~ y - qflh 

Let us compute the integral 

# E,,,,, ~ 5". J"Egi(y(u))] 
U ~  Eiln I j =  0 

Using (2.2.1) and (2.2.4), we have for any U~E,,,~ 

1 i(,O 1 - -  v/ 

J " [ g i ( y ( U ) ) ] " - -  
i(n) i=o i(n) 

and then 

We get therefore 

f - -n  J" d{,, i(n) 

i(n ) 
lim 

n ~ + ~ n 

I 
="=I -J"  dr 

(2.2.7) 

(2.2.8) 
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Now we estimate the number ), by a standard argument due to Misiurewicz 
(ref. 4, p. 145) with the following result. 

P r o p o s i t i o n  2 .2 .4 .  W e  h a v e  

7~<~ he 
- J " d ~  

Proof of  Proposition 2.2.4. Let (P) be a r continuous partition (for 
example, the unstable dynamical partition) whose elements have diameter 
d < 2. To obtain a lower estimate of the !-entropy of the partition (P), we 
define the iterations 

J 

(P)J= V g-i , (p)  
k = 0  

and we compute for any integer M the number H,:.(P) g. Let us recall that 
each set Ei is (i, 3 )-separated ~ ' ~ (Vx # y), 3j < i, d(g-/(x), gJ(y)) > 6), since 
the associated cylinder satisfies _d(aqx), or i(2,)) > 6. The set Ei~,,~ is therefore 
(i(n),8)-separated, and we have for any B ~ ( P )  jl'~-l, #{Bc~Ei~,,~} <~ 1. 
The classical computation of the entropy follows: 

1 - 1  1 1 1 
H o . ( p ) i l , o -  1 = ~ # Eit ,o L o g  - -  i(n) v ~,., #E,,,~ i(n) Log # E l ( , ,  ) i(n) 

and taking the limit when n goes to +oo, we get with (2.2.6) 

lim 1 . y - + ~. ~ Ho,(p),(, ,-I = _ (2.2.9) 
n t] 

For an integer M such that i (n )>2M,  we define for integers 
q E [0; M -  l ] 

and Ru= {0, 1 ..... q - l , s ( q ) M + q  ..... i ( n ) -  1 } 

and we have #Rq~<2M. We obtain for q~ [0; M -  1] 

s(q)-  I 
(p)i(n)-l= V g - * g - q ( P )  g - ' v  V g .... (P) 

k = 0 m E Rq 

and we have then 

s(q) -  1 

Ho.( P)iu'j- 1 <~ Z 
k = 0  

H o . [ g - * g - , l ( p ) g -  l] + #R~ Log # P  
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We verify that 

s lq ) -  1 
S 

k=O 

i(n) -- I / I n ) -  ' 

Hg'o. ( P ) ~ - ' =  2 Ho.[g-Y<P) M - t ]  
j = 0  j=O 

M 1 s lq ) -  I 

>I ~ 2 H,,.[g-kM-q(P) M-'] 
q=O $.'=0 

H o , , [ g - k M - q ( p ) M -  t ]  > / H o . ( p ) i l , , I -  ] __ ~ . R q  Log # P  

( , )  

>>. Ho.( p)il,,~- i _ 2M Log # P  (**) 

The expressions (,)  and (**) lead to 

i (n)-  1 
Hg,o.(p)M- 1 >t MHo.(p),, ,~- l _ 2M 2 Log # P (***) 

j = 0  

Using the concavity of the function x ~ - x  Log x, we get 

> 1 " ' L -  ' - ' 
H r  i ~ i(n) j = o  H g ~  ( * * * * )  

and we obtain by comparing (***) and (****) 

j > M  2M z 
H~"(P)M- ~" i(n) H~ - i(n----) Log # P (2.2.10) 

Taking the limit in (2.2.10) when n goes to +oo, we obtain with (2.2.9) 

1 H~(p)M 1>7 (2.2.11) 
M q 

Taking the limit in (2.2.11) when M goes to +co, we get 

hr ~ 
q 

and comparing to (2.2.8) achieves Proposition 2.2.4. I 

Using Proposition 2.2.4 and (2.2.7), we get 

- -  F;;(  # ) ~ 7 - -  fifth <~ I (~  ) 



Axiom A D i f feomorph isms.  I 1343 

We have then proved a stronger result, which says that for any cluster point 
F of the sequence (-Fi',(fl)),,~ , there exists a g-invariant measure ~ which 
satisfies the inequality F~< I(~), and that gives obviously Lemma 2.2.3. II 

We prove now a sort of reverse inequality, since we estimate a lower 
bound of the lower limit with the following result. 

k e m m a  2.2.5. We have for any real fl 

lim -Fi',(fl)~> sup l(p) 
n ~  + ~ -  p e M x ( A )  

p e r g o d i c  

Proof of Lemma 2.2.5. We consider a g-invariant ergodic measure 
p. From the ergodic theorem we have on a set of p measure 1 

1 i ( n ) -  I r 

lim - ~  ~ j . [ g i ( y ) ] = j J ,  dp (2.2.12) 
n ~  + z c  / = 0  

Using (2.2.1) and (2.2.12), the theorem of Shannon-McMil]an (ref. 4, 
p. 81 ), leads us to consider the intervals U of U',', such that 

n 
n(U) i _ J ,  d p - n ,  (2.2.13) 

since the measure p is concentrated on these elements. Let e > 0 and the set 

A,"-- { Ue U, , /n , -e  <n(U)<n,  + e} 

integer N such that for any integer n>~N we get There exists an 
#l p(Ap)>~ 1 - e  and 

#A'], >i (1 --e) exp{n,(h, -~)}  (2.2.14) 

tt and for any interval U~ A,  we have 

p"(U) 1~ >~ exp{ - n , ( h ,  +_ e) hfl}. (2.2.15) 

From the definition (2.1.1) and the inequalities (2.2.14) and (2.2.15) we get 

I L o g {  p"(U)~} ~ #A'~exp{-n,,(h,+_e)h~} -F,",(fl)>~ n Z >~ Log 
, L ~ Ae~ 

and this leads to the inequality 

h, - ~h - 2~ 
lim - FII(~) ~> ~ ----)7, ~--~p ~ 

t t ~  +z t2  
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Since the real e is arbitrary we get 

lim - F;',(fl) >~ I( p ) 

and since the measure p is arbitrary we get Lemma 2.2.5. I 

Using Proposition 2.2.2 and Lemma 2.2.5, we obtain finally 

lim -F,",(fl)>~ sup I(p) 
n ~  + ~ ,  p e M g ( A )  

which, with Lemma 2.2.3, gives Theorem 2.2.1. I 

We prove the following similar result for the stable free energy function. 

T h e o r e m  2.2.6. We have for any real fl 

FS(fl)= inf [h, - f lh]  
~M,,A, L j J ' d p J  

The proof is analogous to the one of Theorem 2.2.1; it suffices to take 
g -  ~ instead of g ("unstable under g ' becomes stable under g"). We get 
then 

u s It s . it s Jg_,=Jg, Wloc(X,g- I )  = Wior and U,,.e-,=U,,.g 

Proposition 2.2.7. The functions F ", F s, and F=F"+F s are 
concave. 

We are interested now in a more intrinsic free energy function (the 
dynamical one) which is generated by the dynamical partition. 

2.3. Computat ion of the Dynamical Free Energy Function 

We define on R 2 the unstable (resp. stable) dynamical free energy 
function by 

V(x ,y )~R 2, G ' , : ( x , y ) = ! L o g {  ~ #'(A)"IA, y} [resp. G,~,(x,y)] 
A E.~ 

and the convergence of these sequences is treated in the following theorem. 

Theorem 2.3.1. We have for any pair (x, y)~ I~ 2 

lim G,,{x, y)= a"(x, 3,)= sup hp+ (yJ"-hx)  
1 1 4  + ~ pE MglA) 

lim an(x, y)  = G~(x , )9  = sup  h,, + ( y J ' -  hx) 
n ~ + w_ p ~ .  M ~ I A )  
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The proof of Theorem 2.3.1 parallels the proof of Theorems 2.2.1 
and 2.2.6; the major fact is that for any A e ~  and B e~ ; ]  we have 
p'(A) ~- p"(B) = e - 'h and 

In -- ' 
exp ~j~o J"[gJ(y(A))]} " [A[ and 

So it is easy to prove that, for example, 

- [ iim G;',(x, y) <~ sup h~, + 
n ~  +o~ pE  Mg(A)  

An analogous counting argument to the one 

lim G',',(x, y) >i 
/ l ~  +o=, 

f" ' )]} [BI exp ~j~o J"[g/(y(B) ~- 

(y J" - hx) tip] 

sup 
p E MxIA  ) 
p e r g o d i c  

in Lemma 2.2.5 shows that 

Since this functional is convex (and upper semicontinuous) and the ergodic 
measures are extremal (and form a Ga), we have 

sup [ h o + f ( y J ' - h x ) d p l =  sup 
p E Mg(A ) p E M'gIA ) 
p e r g o d i c  

ht, + f (y J" -- hx) dp] 

Observe that G"(x,y) [resp. G"(x,y)] represents the pressure of 
the H61der continuous function y J " - h x  (resp. y J " - h x )  and then the 
supremum is achieved by a unique measure which is its Gibbs measure. 
Moreover, these functions G" and G" are real analytic in both variables x 
and y.(,8) This property will help us to prove the smoothness of the free 
energy function F. 

2.4. Regular i ty  of  the Free Energy Funct ion F 

The relation between F" and G", and F '  and G' is derived from the 
following. 

Theorem 2.4.1. We have for any real fl 

G"( fl, -F"(fl))= G"( fl, -F"(fl))=O 

Proof of Theorem 2.4. 1. Let fl ~ R. We have from Theorem 2.2.1 for 
any g-invariant measure 

J"  de ~< 0 (2.4.1) he ~ h ~  ~ F"( fl ) 
J 
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This leads us to the inequality 

G"( fl, - F " ( f l ) )  ~< 0 

Since the function rI~=F"(fl) J" -h f l  is H61der continuous,  the pressure 
(or G") is achieved by a unique measure p~ which is also the unique 
measure which achieves F"(fl). The inequality (2.4.1) becomes an equality 
only for r = ta); and we have 

G"( fl, - F " (  f l )  ) = P(r / j )  = O  (2.4.2) 

By the same method we prove that G~(fl,-F>(fl)) and F"(fl)  are 
achieved by a unique measure P~i which is the Gibbs  measure of the H61der 
continuous function ~1~ = F"(fl)J"-hfl, and this gives Theorem 2.4.1. II 

The smoothness  of the function F" is given by the following result. 

Theorem 2.4.2 .  The function F"  is real analytic on R, is strictly 
increasing, and is either linear (this is the case when J" is homologous  to 
a constant,  i.e., J " =  C+ K o g -  K) or strictly concave. 

Proof of Theorem 2.4.2. We differentiate (2.4.2) and we obtain for 
any real fl 

\ &.< j - ( F " ) '  (fl) \ - ~ . v  ,}J (fl' - F " ( f l ) ) =  0 

We get from (13" 14. 18) 

and then we obtain 

=i j,, - Ty) (fl, - r " ( f l ) )  

h 
, > 0  (2.4.3) (F")' (fl)=~ _j , ,  dlal ' 

From a theorem of implicit functions and since (~G"/Sy)(fl, -F"(f l ))< 0 
( a n d # 0 ) ,  the function F" is real analytic. Differentiating one more  time 
(2.4.2), we obtain 

F (O:G"/~;,")] 
(F")" ( f l ) = h  2 L (dG"/dY) 3 J (fl' -F"(fl)) 

h: 
- , , .  j,,--(,)3-tjalit\ 8Y 2 ,] (fl' - F " ( f l ) )  (2.4.4) 
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We have from (~4' ~5) 

c~y 2 j > O  

except for the case when J " = C + K o g - K ,  which is the degenerate 
caseJ '81 We have then in the general case 

VileR, (F")" (fl) < 0 

and this gives Theorem 2.4.2 I 

We obviously have similar results for F s. We obtain then the following 
result. 

Proposition 2.4 .3 .  The function F is real analytic on R, is strictly 
increasing, and is either linear (this is the case when ~ is absolutely con- 
tinuous with respect to I" I) or strictly concave. 

The case when F is degenerate is the case when J "  and J" are 
homologous  to constants  (F" and F s are degenerate);  the function J, the 
logarithm of the Jacobian of g ( = j s  j , ) ,  is also homologous  to a con- 
stant: J =  C +  K o g -  K. The measure  ,u is then absolutely cont inuous with 
respect to the Lebesgue measure,  like the Gibbs  measures Ps, and /~j, of 
the type ke~r I �9 I. 

Let us define the Legendre-Fenchel  t ransforms of F ", F ~, and F 
from (0.4): f " ,  i f ,  and f In the case when F is linear (resp. F"  and F ~) the 
function f (resp. f "  and f " )  is only defined in one point: 

F ( f l ) = - l h ( 1 - f l ) c  and f ( ! ) _ h _ c  

which is the degenerate case. In the general case f is defined and positive 
on an interval ] ~  ; ct2[ c R + * (possibilities of limits at the boundaries)  and 
/ ' -  - oo otherwise (ct < ct~ and a > % ) ; f i s  also concave, and by a relation 
of conjugacy we have ~5~ 

f ( ~ )  + F(fl) = ~fl ,~  ~ = F ' ( f l )  (2.4.5) 

We have then for any real fl 

f (  F'( fl) ) = flF'( fl) - F( fl) (2.4.6) 

which means t h a t f i s  real analytic on ] a , ;  a2[. The expression (2.4.5) leads 
tO 

f(cQ + F(fl)  = c~fl ,~  fl = i f ( a )  (2.4.7) 

~22/76/5-6-17 
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Let us define c t (0 )=F ' (0 ) .  We have then: 

�9 f is strictly increasing on ]~q; ~(0)[.  

�9 f achieves its supremum at ct(0). 

�9 f i s  strictly decreasing on ]ct(0); ct2[. 

�9 For  cte ] cq ;~2[  and f l = f ' ( c t )  we have 

1 
f " ~  = " "  r" ( /~)  

and f is strictly concave. 

We have of course similar results for f u  and fs .  In the next section we 
relate the f u n c t i o n f t o  the dimension spectrum of the measure p, i.e., to the 
Hausdorf f  dimensions of the singularity sets of the measure p. 

3. C O M P U T A T I O N  OF THE H A U S D O R F F  D I M E N S I O N S  
THE S INGULARITY  SETS OF THE M E A S U R E  IJ 

Let D~ be the set of points x such that ct is a cluster point of 

OF 

Log it(R) 
where x e i n t ( R )  and I R I s 0  

Log IRI 

We have then the following result. 

T h e o r e m  3.1.  We have for any real c t e ] ~ ; c t 2 [  

HD(D,) = n O ( C  +, ) = HD(C~ ) =  HD(C,) = f(ct) 

Proof of Theorem 3.1. We define the product  part i t ion U,,= [U,~; U,~,] 
and the r andom variables ( W,,),,~> j on U,, by IV,, = Log p(U) and equipped 
with the counting probabil i ty measure. Using (0.5), we have for any real 

Z,( [~) 
E(exp(/~W,,)) = e" 

and with Theorem 2.2.1 we obtain obviously 

lim 1 Log{E(exp(/~W,,))} = - F ( / ~ ) -  1 
n ~  + o r  F/ 

The sequence (W,,),,_>, satisfies a large-deviations theorem (ref. 5, 116.1). 
For  any real x e D= there exists a sequence (Rp)p~> j such that  

xeint(Rp), [Rp[-*0 and lim L o g p ( R p )  
p - + o~, Log [Rp I 
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For e > 0 (such that u + ~ e ]ct~; ~tz[ ) and according to the large-deviations 
theorem, there exists an integer N such that for any integer n > N we have 

#{UeU,",/p(U)>~IUI =+~} <~exp{n(f(ot+e)+e)} (3.1) 

Let m >> N an integer and 6 = e - "  a positive real; for large integers p we get 

[Rp[ ~6C and IJ(Rp)>~ [Rp[ ~'+~'/2 

and there exists an integer n(p)> m such that 

1 
- e - ' ~  [Rp[ ~ c e  -n 
c 

We describe the general situation as follows: 

We have then 

and also 

,u(Rp)~p(? Q~)<~4sup 

sup p(Q~)>>.4-'IZ(Rp)>~4 -' IRpl=+~/Z>~c . . . .  /z4-, [Q~,I=+,/2>~IQe I=+~ 
i 

We have then the property 

3i, 1~<i~<4, p(Q,;)>~lQi[ "+" 

The element Rp is contained in a ball of diameter ce-" and centered in Q,~,. 
Let the real r > f ( c t  + e ) + e .  We get with the definition of the Hausdorff 
dimension 

HDM,,a(D=)= inf ~IP,  I'~< ~ exp{n(f (~+e)+e)} (ce-")  �9 
D= c ~)i P1 i n >~ m 

IPil <~ 6 

since the number exp{n(f(o~+e)+e)} is greater than the number of 
elements U~ U." satisfying/I(U) ~>[U[ =+E. We find 

HDM,,a(D,) <~c~ Z e x p { n ( f ( 0 t + e ) + E - z ) }  (3.2) 
n ~ rn 
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which is a convergent series by our assumption. Since ~ goes to 0 when m 
goes to + o~, we get 

lim HDM~.,s(D,)=O (3.3) 
6 ~ 0  

This leads to the inequality 

HD(D,) <~ f(~t + ~) + 

and since e is arbitrary, we obtain 

HD(D:,) <~ f(ot) (3.4) 

We use Frostman's  lemma applied to an appropriate measure to prove 
the reverse inequality. Let us recall that in ref. 2 one constructs recursively 
a familly (Rp)p~>~ of intervals depending on two sequences (rj)i>~ and 
(6j)j>_~. The assumptions made on these two sequences allow us to define 

u $ two families of  intervals (Rr)p~ ~ and (Re)e> ~ 1. Let us define the sequence 

R. = I-R~; R;A 

and the set 

p>~l RERp 

The first step is to prove that 

V ~ c C ~ = ( C  + n C ~ ) c D ~ .  

Then we define recursively a measure ~ on Rp satisfying ~(R~)= 1 and for 
any R ~ Rp 

~ ( R )  = 
~(R') 

# {M~,%/14= R'} 

where R'  is the only element of Rp_ t such that R c R'  [~(. I R ' )  is the 
counting probability measure on Rp]. The measure ~ is the product  of the 
measures ~" and ~" obtained by the same method on the unstable and 
stable manifolds and which satisfy Frostman 's  lemma. The result can be 
applied to ~ since we have 

~(B~) ~< C I B~ I t ~  
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where fl~ is a ball of small diameter a. We obtain therefore the inequality 

HD( V=) >~ f(oO (3.5) 
Since we have 

V~ c C = = ( C  + n C ~ ) c ( C  + ~ C ; ) c D ~  

we get following (3.4) and (3.5) a stronger result 

HD( I1"=) = HD( C~) = l iD(  C + ) = HD(D~) = f ( a )  

and this gives Theorem 3.1. II 

In the next section we study more precisely the function f,  in particular 
at the boundaries cr and cr 

4. P R O O F  OF  T H E  D I M E N S I O N  S P E C T R U M  T H E O R E M  

In the general case we obtain results which generalize those in dimen- 
sion one ttT~ and are given by the following. 

T h e o r e m  4.1.  For  any real ct e [Ctl;CX2] there exists a g-invariant 
measure/~= such that 

f ( c t ) = H D ( p ~ )  and L o g p ( R )  ~cx /~ a.e. 
Log lR]  im~o 

Moreover,  there exist positive reals r and r /such that 

[c~;c;,]cc~ 

and the Hausdorff  dimensions of the two sets coincide. 

Proof  o f  Theorem 4. I. Let us first study the case ~ �9 ]r c%[. 
Let t i e r  such that f l = f ' ( a )  [and by (2.4.5) and (2.4.7) we have 

~ =  F ' ( f l ) ] ,  and define the reals o~'=(F") '  (fl) and u s=  (FS)' (fl). We have 
from (2.4.5) 

cr = cr + c~ ~ and f ( ~ ) = f ' ( u " ) + f " ( ~  ~ ) (4.1) 

We shall relate f " ( a ' )  and ff(u~) to the Hausdorff  dimensions of the Gibbs 
measures p~ and P"-t~ [See (2.4.2)]. The singularity sets of p" and p~ are 
denoted C~ and C s. 

k e m m a  4.2.  We have 

IZ~(C'~,) = 1 and f " ( u ' )  = H D ( p ~ ) =  HD(C~,,) 
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Proof  o f  L e m m a  4.2. We have from (2.2.1) and (2.2.2) for any 
interval U 

# ' ( U )  "" e - ' ' v ' h  and exp f "~UI- ,U, ,. j~=o J " [ g J ( y ( U ) ) ] }  

Since the measure/a~ is ergodic, we have the following convergence: 

Log/z"(U) h 

Log ]U] [ l / n ( U ) ]  ~'~=Vo'-' - J U [ g J ( y ( U ) ) ]  

h 
I, u 

1rico f - J " a , ~  /@ a.e. 
j ~ r p  

and we obtain therefore 

Using (2.4.2), (2.4.3), and (2.4.5), we have 

i f ( a " )  = a " f l -  F"( fl) = ( F")'  ( fl) f l -  F"( fl) 

h 
i _  j , ,  dla,~ f l - -  F"( fl) 

Since we have from (2.4.2) 

(4.2) 

P(za) = h,,~ - hfl - F"(f l)  f J" dlt~ = 0 

we get 

h, 4 h 
fl - F"( fl ) (4.3) 

Comparing (4.2) and (4.3), we obtain 

hj 4 

f " ( a " )  - S - -  j u  dla, a 

Following refs. 14 and 15, we have 

- J" d12'~ = HD(12~) = in f {HD(A  )/la'~(A) = 1 } 

(4.4) 

(4.5) 
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and we obtain therefore the inequality 

f"(a") >1 HD(C~.) 

The proof of the reverse inequality 

f"(a") <~ HD(C~) 

parallels the proof of (3.4), and this gives lemma 4.2. l 

. . . .  We have from Let us define the measure p , - / a p •  
Lemma 4.2 

(4.1) and 

f (~)  = f " (a" )  + f'(cx') = HD(p~)+ HD(IJ~) = HD(p~ x #~) = HD(IJ,) 

We have also 

[c'_'.,; c ; , ]  = c, 

with equal Hausdorff dimensions sincef(c 0 = f"(cr fs(~s). We have then 
shown Theorem 4.1 in the case ~e  ]cr 

We prove now that f , f " ,  and f "  are defined at their boundaries. Let 
first study f" .  

Lemma 4.3. The function f "  is defined on [ ~ T ; ~ ] c R  +* and 
there exist g-invariant measures pj and P2 such that 

h h 
and ~x~ - ~ - J" dp2 o,, =~ -JU dP, 

h m hp, 
f u ( ~ ) _  j --J" dp, and f"(o?~)-~ - J "  dP2 

Proof of Lemma 4.3. We have seen that there exists for any real 
e ]~1 ; ~2[ a real fl such that 

h 
~ = (F")'  ( f l )=S -J"dI.C~ 

Since the function (F")'  is strictly decreasing, we have from Theorem 2.4.2 

~,-"- inf (FU) ' ( f l ) =  lim ( F " ) ' ( ~ )  
p e r  / / ~  + r  

c~g=sup(FU) ' ( f l )= lim (F")'(fl) 
# e R  f l - -  - o ~  
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Let L be the set L =  { ,u~/fl~ ~}  c M~(A) .  Since the functional 

h 
J: P ~ i _ j , ,  dp 

is continuous on the compact  L, it achieves its infimum and its supremum. 
Let us define g-invariant measures p~ (a cluster point of p~ when fl ~ + co) 
and P2 (a cluster point of/J~ when fl ~ - r which satisfy 

h h 
a'~= J ( P ' ) -  ~ - J ~ d p ,  and (x~ = J ( p 2 ) -  ~ _ j , ,  dp 2 

Since the functional 

K: 
hp 

I - J " d p  

is upper semicontinuous, we have, using (4.2), 

u lim K(l~l~)<~K(pt) lim f" (cc)=  lim f"((F")'(fl))=t~+~_ 
�9 - ~ 7  /~- +~- ( 4 . 6 )  

lim f"(0c)= lim f " ( ( F " ) ' ( f l ) ) =  lim K(I t~)<~K(p2)  
~ is-  - ~  # -  - ~  

Now we apply the variational principle (2.4.1) and (2.4.2) to the measures 
p~ and P2, and we get, for example, for large f l>O 

f J" alp, < 0  

which gives with the values of ~'~ and (2.4.6) 

K( p, ) ~ 0c~ fl - F ' ( f l )  ~ ( F ' ) '  (fl) fl - F"(f l)  = f ~ ( ( F ' ) '  (fl)) 

Taking the limit when fl goes to + oo, we get 

K ( p ~ ) ~  lim f ~ ( ( F " ) ' ( f l ) ) =  lim f " (~ )  (4.7) 
f l ~  + o c  o c ~  I 

Comparing (4.4) and (4.7), we obtain 

iim f ' ( a )  = f"(~'()  = K( p, ) 

By the same method we have for large fl < 0 

K( p2) <~ ~'~ [3 - F"( fl) <<. ( F") '  ( fl) [3 - F"(  fl) = f ' (  ( F")  ' ( fl) ) 
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which leads to the inequali ty 

We get therefore 

lim, f"(ct)  K(p2) <~ a-lim- ~- f"((F")'  (fl))= 

l i m  f"(ct)  = f " ( a ~ )  = K(P2) 

which gives Lemma 4.3. II 

These results can be extended obviously to the function f "  and, as we 
shall see later, to the function f .  We can find therefore g- invar iant  measures 
~ and r such that  

h h 
ct~t-~ - J " d ~ i  and ct~- ~ -J"d~_  

f ' ~ ( ~ ) - ~  - J " d ~ ,  and f s (a~)=fs (~  -J"d~2  

Let us define the measures (1 =P~ x r and (2 = P 2  x ~2; we have from (4.1) 

and 

tt s " and c~ 2 = ct, + % oq = ct '[ + ct I 

f(~l) = f"(aT)+ f~(a~ )= HD((,) 

which gives Theorem 4.1. 

f (~2)  = f~(ct~) + fs(~.~) = HD((2)  

! 

I r~ -I0 - ~ - 5 -  

-Io. 

-20 

Fig. 1. Graph of the free energy function F". F':  • ---, R, fl ~ F'(fl). 
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1 .4  

I S 

We have then shown that  in the general case the d imensional  spectrum 
f ( ~ )  is defined on an interval  I-cr ~2] c ~ + "  and has the typical  concave 
shape. 

R e m a r k s .  1. There are some remarkable  values: F " ( 0 ) =  1; F " ( I ) = 0  
a n d f " ( ( F " ) '  ( 0 ) ) =  1;f+((F+) ' ( 0 ) ) = 6 ~ <  l and  ~5= l if and only if the G ibbs  
measure  of J ' ,  ~.r,, is absolutely cont inuous  with respect to the Lebesgue 

Fig. 2. Graph of the derivative of the 
fl--+ (F') '  (fl). 

0+8 5 ~  5 i0 15 

O.6 

free energy function F", (F+) ' :N~]a~;a~[,  

measure.< 1 ) 

Fig. 3. 

J -iS 
I I I 
5 IO 15 

0 I 

-10  -#5 

Graph of a tranform of the dimension spectrum f+, H: R---, ]inf(f"(a~);ff(a~,)); 
-F+(O)], ,q ~ fl(F~) ' (fl)--F+(fl)=f'((F~) ' (fl)). 
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Fig. 4. Graph of the dimension spectrum f ' ,  f ' :  [~ ;c t~] - - ,  [inf(f~(~;=~));  - F ' ( 0 ) ] ,  

= ---.f'(=). 

2. For any real fl, the line y=fl~-F"(fl) is tangent to the graph 
7--*f(~) at the point ct= (F")' (fl). 

3. The function f is degenerate if and only if the functions f "  and f s  
are degenerate. In this case, i f f takes  the value 2, then the measures/~" and 
/V, and consequently #, are equivalent to the Lebesgue measure. 

To complete this study we give the graph of the different functions we 
have found (this is just for the illustration of the general shape): the free 
energy function F s (Fig. l), the derivative P "  of the free energy function 
(Fig. 2), the function H which is a transform of the dimension spectrum 
[see (2.4.6)] (Fig. 3), and the dimension spectrum function f s  (Fig. 4). 
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